

University of Genova, Italy. DIME Department of Mechanical, Energy, Management and Transportation Engineering

MSc Course in Energy Engineering (En2), www.en2.unige.it

En2 Admission Test EXAMPLE, Version april 2016 Tick the proper column according to the selected response. Each correct answer gives 2 points, each incorrect answer -1. No answer is equal to 0 points. The Test is passed provided that a minimum of 36 points is attained CANDIDATE FULL NAME AND SIGNATURE С B А 1) The gradient of the function $f(x, y) = y \frac{e^{-x}}{x}$ is: $A \left(ye^{-x}, \frac{e^{-x}}{x} \right) \qquad \qquad B \frac{e^{-x}}{x} \left(-y \frac{x+1}{x}, 1 \right)$ $e^{-y\frac{(x+1)e^{-x}}{r^2}}$ 2) The gradient at a point P of a differentiable function fA gives the direction in which f has the maximal rate of increase **B** if it is zero, it means that f has a maximum or a minimum in P **C** is a scalar function 3) Let $|x| = \sqrt{x^2 + y^2 + z^2}$, the divergence of the vector field $\left(\frac{x}{|x|^2}, \frac{y}{|x|^2}, \frac{z}{|x|^2}\right)_{is}$ A0B(0,0,0)C3/[x]³4)Which of the following subset of R³ is a vector space (or linear space)? A a sphere centered at the origin, with radius 1 **B** each plane through the origin C each plane 5) What is the correct definition of the Reynolds number? **A** $\operatorname{Re} = \frac{wL}{\mu}$ **B** $\operatorname{Re} = \frac{wL\rho}{v}$ **C** $\operatorname{Re} = \frac{wL\rho}{\mu}$

6) What is a true formulation of the Fourier law?		
$\mathbf{A} \dot{Q}'' = -k \frac{dT}{dx} \qquad [W/m^2]$		
$\mathbf{B} \dot{Q} = kA \frac{dT}{dx} \qquad [W]$		
$\mathbf{C} \dot{Q} = -hA\frac{dT}{dx} \qquad [W]$		
7) What is a true formulation of the Newton law?		
$\mathbf{A} \dot{Q}'' = hA(T_s - T_{\infty}) \qquad [W/m^2]$		
B $\dot{Q}'' = h(T_s^4 - T_{\infty}^4)$ [W/m ²]		
$\mathbf{C} \dot{Q}'' = h(T_s - T_{\infty}) \qquad [W/m^2]$		
8) What are the units of the spectral emissive power $E_{b\lambda}(\lambda,T)$?		
$\mathbf{A} \left[\frac{W}{m\mu m}\right]$		
$\mathbf{B} \left[\frac{W}{m^2 \ \mu m}\right]$		
$\mathbf{C} \left[\frac{W}{m K}\right]$		
9) In a pipe with internal diameter of 2 cm flows some water at room an average velocity of 1 m/s. What is its mass flow rate?	temperature and	
A 0.314 kg/s B 0.314 l/s C 3.14 l	/min	
10) Consider water at room temperature flowing at the average velocity horizontal pipe with constant internal diameter of 2 cm. The viscosity is 10^{-6} m ² /s. Calculate the pressure drops for each meter of	y of 5 cm/s in an water cinematic tube.	
A 4 bar/m B 4 Pa/m C 40 Pa/m		
11) What are the units of the thermal conductivity k and of the convectivity in SI?	ve coefficient h	
$\mathbf{A} \left[\frac{W}{mK}\right] \qquad \left[\frac{W}{m^2K}\right]$		
$\mathbf{B} \left[\frac{W}{m^2 K}\right] \qquad \qquad \left[\frac{W}{m K}\right]$		
$\mathbf{C} \left[\frac{W}{mK}\right] \qquad \qquad \left[\frac{W}{K}\right]$		

1)) which types of shi	ple energy systems are presen	t in a combined plant?	
A Internal combustion	n engine + Steam power plant		
B Turbogas + Steam	power plant		
C Turbogas + Interna	l combustion engine		
20) Which of these ph when it is transferr internal combustion	ases are producing positive ed from the thermodynamic sy n engine?	work (work is considered positive ystem to external components) in an	
A Expansion	B Compression	C Exhaust discharge	
21) Which is the expre	ssion of the efficiency for the	ideal Otto cycle (β is the pressure	
ratio, ρ is the vector constant volume sp	olume ratio and k is the rat pecific heats)?	io between constant pressure and	
$\mathbf{A} \ \eta = 1 - \boldsymbol{\beta}^{k-1}$	$\mathbf{B} \ \eta = 1 - \rho^{k-1}$	$\mathbf{C} \ \eta = 1 - \frac{1}{\rho^{k-1}}$	
22) Which are the nam	es of the main hydraulic turbin	nes?	
A Curtis, Francis, Lju B Polton Francis, Ka	ngström		
C Pelton, Francis, Ka	pian ingström		
,, -j.			
23) A constant electric ¹⁷ across the resister	current i flows through a re or and the power p that the re	sistor of resistance R . The voltage	
	1	sistor converts to heat are:	
	(i	sistor converts to heat are: $ \left(v = Ri^2 \right) $	
$\begin{cases} v = Ri \\ r = Ri \end{cases}$	$\begin{cases} v = \frac{l}{R} \\ m = Pl \end{cases}$	sistor converts to heat are: $ \begin{cases} v = Ri^2 \\ p = -\frac{i^2}{2} \end{cases} $	
$\begin{cases} v = Ri \\ p = Ri^2 \end{cases}$	$\mathbf{B} \begin{cases} v = \frac{l}{R} \\ p = Ri \end{cases}$	Sistor converts to heat are:	
	$\mathbf{B} \begin{cases} v = \frac{l}{R} \\ p = Rl \end{cases}$	sistor converts to heat are: $ C \begin{cases} v = Ri^{2} \\ p = -\frac{i^{2}}{R} \end{cases} $ etor of inductance <i>L</i> increases from	
	$B \begin{cases} v = \frac{i}{R} \\ p = Ri \end{cases}$ In that flows through an induce i , then the energy U store	sistor converts to heat are:	
$ \begin{array}{l} $	$B \begin{cases} v = \frac{i}{R} \\ p = Ri \end{cases}$ nt that flows through an induce e^{i} , then the energy U storm magnetic field established in	sistor converts to heat are:	
A $\begin{cases} v = Ri \\ p = Ri^2 \end{cases}$ 24) If the electric curre 0 to a steady value associated with the	$B \begin{cases} v = \frac{i}{R} \\ p = Ri \end{cases}$ nt that flows through an induce i , then the energy U storm magnetic field established in 1	sistor converts to heat are:	
$ \begin{array}{l} $	$B \begin{cases} v = \frac{i}{R} \\ p = Ri \end{cases}$ nt that flows through an induce i , then the energy U storm magnetic field established in T $B \qquad U = \frac{1}{2}Li^{2}$	sistor converts to heat are:	
$ \begin{array}{l} $	$B \begin{cases} v = \frac{i}{R} \\ p = Ri \end{cases}$ In that flows through an induce i , then the energy U storm magnetic field established in $U = \frac{1}{2}Li^2$ B $U = \frac{1}{2}Li^2$	sistor converts to heat are:	
A $v = Ri$ A $v = Ri^2$ 24) If the electric curre 0 to a steady value associated with the A $U = Li$ 25) The equivalent resi	$B \begin{cases} v = \frac{i}{R} \\ p = Ri \end{cases}$ Int that flows through an induce i , then the energy U store magnetic field established in $B = \frac{1}{2}Li^2$ B $U = \frac{1}{2}Li^2$ Stance of the network of resist	sistor converts to heat are:	
$ \begin{array}{l} $	$B \begin{cases} v = \frac{i}{R} \\ p = Ri \end{cases}$ Int that flows through an induce i , then the energy U stormagnetic field established in $B U = \frac{1}{2}Li^{2}$ Stance of the network of resist	sistor converts to heat are:	
$ \begin{array}{l} $	$ B \begin{cases} v = \frac{i}{R} \\ p = Ri \end{cases} $ Int that flows through an induce i , then the energy U stormagnetic field established in $ B U = \frac{1}{2}Li^{2} $ Stance of the network of resist $ \frac{R_{1}}{M} = \frac{R_{2}}{M} $ $ \frac{R_{1}(R_{2} + R_{3})}{R_{3}} $	sistor converts to heat are:	

